Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch. endocrinol. metab. (Online) ; 68: e220493, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1520080

RESUMEN

ABSTRACT FGF21 is a hormone produced primarily by the liver with several metabolic functions, such as induction of heat production, control of glucose homeostasis, and regulation of blood lipid levels. Due to these actions, several laboratories have developed FGF21 analogs to treat patients with metabolic disorders such as obesity and diabetes. Here, we performed a systematic review and meta-analysis of randomized controlled trials that used FGF21 analogs and analyzed metabolic outcomes. Our search yielded 236 articles, and we included eight randomized clinical trials in the meta-analysis. The use of FGF21 analogs exhibited no effect on fasting blood glucose, glycated hemoglobin, HOMA index, blood free fatty acids or systolic blood pressure. However, the treatment significantly reduced fasting insulinemia, body weight and total cholesterolemia. None of the included studies were at high risk of bias. The quality of the evidence ranged from moderate to very low, especially due to imprecision and indirection issues. These results indicate that FGF21 analogs can potentially treat metabolic syndrome. However, more clinical trials are needed to increase the quality of evidence and confirm the effects seen thus far.

2.
Arch Endocrinol Metab ; 68: e220493, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948566

RESUMEN

FGF21 is a hormone produced primarily by the liver with several metabolic functions, such as induction of heat production, control of glucose homeostasis, and regulation of blood lipid levels. Due to these actions, several laboratories have developed FGF21 analogs to treat patients with metabolic disorders such as obesity and diabetes. Here, we performed a systematic review and meta-analysis of randomized controlled trials that used FGF21 analogs and analyzed metabolic outcomes. Our search yielded 236 articles, and we included eight randomized clinical trials in the meta-analysis. The use of FGF21 analogs exhibited no effect on fasting blood glucose, glycated hemoglobin, HOMA index, blood free fatty acids or systolic blood pressure. However, the treatment significantly reduced fasting insulinemia, body weight and total cholesterolemia. None of the included studies were at high risk of bias. The quality of the evidence ranged from moderate to very low, especially due to imprecision and indirection issues. These results indicate that FGF21 analogs can potentially treat metabolic syndrome. However, more clinical trials are needed to increase the quality of evidence and confirm the effects seen thus far.


Asunto(s)
Enfermedades Metabólicas , Síndrome Metabólico , Humanos , Glucemia/análisis , Enfermedades Metabólicas/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Diabetes Mellitus
3.
Insect Biochem Mol Biol ; 158: 103956, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196906

RESUMEN

ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase α and ß family, including the α and ß subunits of ATP synthase (RpATPSynα and RpATPSynß), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organsn highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynß knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynß increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynα knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.


Asunto(s)
Rhodnius , Femenino , Animales , Rhodnius/genética , Rhodnius/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo Energético , Triglicéridos/metabolismo , Adenosina Trifosfato/metabolismo
4.
Arch Insect Biochem Physiol ; 112(4): e22000, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36656770

RESUMEN

Insects have become essential models in studying human metabolic diseases, mainly due to their low maintenance cost and available tools. Both mutations and modified diets induce metabolic states similar to human obesity and diabetes. Here, we explore the effect of a high-calorie, high-fat diet on the metabolism of the beetle Tribolium castaneum. Supplementation of the wheat flour diet with powdered egg yolk for 3 weeks increased the total triacylglycerol and accelerated larval development. In addition, this diet increased the triacylglycerol levels of adult beetles. However, this egg yolk supplementation did not alter the larvae's total glucose levels or lipogenic capacity and ATP citrate lyase activity. The diet also did not change the expression profile of several lipid and carbohydrate metabolism genes and insulin-like peptides. Thus, we conclude that the diet supplemented with egg yolk induces increased fat without causing diabetes phenotypes, as seen in other hypercaloric diets in insects.


Asunto(s)
Escarabajos , Tribolium , Humanos , Animales , Tribolium/metabolismo , Yema de Huevo , Polvos/metabolismo , Harina , Triticum , Dieta , Suplementos Dietéticos , Triglicéridos/metabolismo
5.
Insect Biochem Mol Biol ; 133: 103569, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33753225

RESUMEN

The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.


Asunto(s)
Drosophila melanogaster , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito , Metabolismo de los Lípidos , Oogénesis , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Cuerpo Adiposo/metabolismo , Ácidos Grasos/metabolismo , Femenino , Fertilidad , Genes de Insecto , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Homeostasis , Oogénesis/genética , Oogénesis/fisiología , Ovario/metabolismo , Triglicéridos/metabolismo
6.
Biomed Pharmacother ; 88: 948-955, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28178626

RESUMEN

Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols.


Asunto(s)
Tejido Adiposo/metabolismo , Enfermedades Metabólicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Animales , Diabetes Mellitus Experimental/genética , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Obesos , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...